Tank-treading and tumbling frequencies of capsules and red blood cells.

نویسندگان

  • Alireza Z K Yazdani
  • R Murthy Kalluri
  • Prosenjit Bagchi
چکیده

This study is motivated in part by the discrepancy that exists in the literature with regard to the dependence of the tank-treading frequency of red blood cells on the shear rate and suspending medium viscosity. Here we consider three-dimensional numerical simulations of deformable capsules of initially spherical and oblate spheroidal shapes and biconcave discoid representing the red blood cell resting shape. By considering a much broader range of the viscosity ratio (ratio of capsule or cell interior to suspending fluid viscosity), shear rate, and aspect ratio (ratio of minor to major axes) than that considered in the previous experiments, we find several new characteristics of the tank-treading and tumbling frequencies that have not been reported earlier. These new characteristics are the result of the large shape deformation and the coupling between shape and angular oscillations of the capsules or cells. For the spherical and oblate spheroidal capsules, the tank-treading frequency shows a nonmonotonic trend that is characterized by an initial decrease leading to a minimum followed by an increase with increasing viscosity ratio. For red blood cells, we find two regimes of the viscosity dependence of the tank-treading frequency: an exponential regime in which the tank-treading frequency decreases at a slower rate with increasing viscosity ratio, and a logarithmic range in which it decreases at a much faster rate. While this trend agrees well with different theoretical models of shape-preserving capsules, it was not evident in previous experimental results. When the shear rate dependence is considered, the tank-treading frequency of red blood cells and capsules of highly elongated initial shapes exhibits a nonmonotonic trend that is characterized by an initial increase leading to a maximum followed by a sharp decrease with decreasing shear rate. This anomalous behavior of the tank-treading frequency is shown to be due to a breathing-like dynamics of the capsule or cell that is characterized by a repeated emergence and absence of deep, crater-like dimples, and a large swinging motion. We further observe that the tumbling frequency exhibits a decreasing trend with increasing viscosity ratio that is in contrast to the theoretical result for the shape-preserving capsules and is due to the periodic deformation and preferential alignment of the capsules in the extensional quadrant of the flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rheology of dense suspensions of elastic capsules: normal stresses, yield stress, jamming and confinement effects.

We study the shearing rheology of dense suspensions of elastic capsules, taking aggregation-free red blood cells as a physiologically relevant example. Particles are non-Brownian and interact only via hydrodynamics and short-range repulsive forces. An analysis of the different stress mechanisms in the suspension shows that the viscosity is governed by the shear elasticity of the capsules, where...

متن کامل

Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow.

A three-dimensional (3D) simulation study of the effect of inertia on the dynamics of vesicles and red blood cells (RBCs) has not been reported. Here, we developed a 3D model based on the front tracking method to investigate how inertia affects the dynamics of spherical/non-spherical vesicles and biconcave-shaped RBCs with the Reynolds number ranging from 0.1 to 10. The results showed that iner...

متن کامل

Full dynamics of a red blood cell in shear flow.

At the cellular scale, blood fluidity and mass transport depend on the dynamics of red blood cells in blood flow, specifically on their deformation and orientation. These dynamics are governed by cellular rheological properties, such as internal viscosity and cytoskeleton elasticity. In diseases in which cell rheology is altered genetically or by parasitic invasion or by changes in the microenv...

متن کامل

Swinging of red blood cells under shear flow.

We reveal that under moderate shear stress (etagamma[over ] approximately 0.1 Pa) red blood cells present an oscillation of their inclination (swinging) superimposed to the long-observed steady tank treading (TT) motion. A model based on a fluid ellipsoid surrounded by a viscoelastic membrane initially unstrained (shape memory) predicts all observed features of the motion: an increase of both s...

متن کامل

Steady to unsteady dynamics of a vesicle in a flow.

We investigate the dynamics of a vesicle in a shear flow on the basis of the newly proposed advected field (AF) method [T. Biben and C. Misbah, Eur. Phys. J. E 67, 031908 (2003)]. We also solve the same problem with the boundary integral formulation for the sake of comparison. We find that the AF results presented previously overestimated the tumbling threshold due to the finite size of the mem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 84 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011